Skip to content Skip to site navigation Skip to service navigation

Python for Beginners (2-day class)

Class Sessions

Date Location Cost
  • Thu Nov 19, 9:00 am to 4:00 pm
  • Fri Nov 20, 9:00 am to 4:00 pm
Live Online $800

Class Code

ITS-2557

Class Description

Effective immediately in response to COVID-19, all Technology Training classes will be delivered online until further notice.

In advance of each session, Tech Training will provide you with a Zoom link to your class, along with any required class materials.

 




Already know Python? Now it is time to acquire the knowledge needed to start using Python in data analytics tasks to scale up and automate process.

 

Prerequisites:

  1. Basic knowledge of Python, or other programming languages
  2. Able to write a Python script that gives the character count for the text "Hello world"
  3. Given two lists (e.g. x=['a', 'b', 'c'] and y=['d', 'a', 'e']), being able to find:
    - the common elements in the two lists
    - the elements in x but not in y and vice versa

 

Taught by Arafat Mokhtar, a Business Intel Analyst at Stanford School of Medicine, this class will help you to leverage your Python skill and venture into the field of data-analytics. We will introduce concepts of data manipulation and analysis such as Dataframe and visualization techniques using Python data science libraries such as Pandas/Numpy/Matplotlib. We will also briefly discuss machine learning libraries such as Sklearn.

 

By the end of this course, you will be able to accomplish common data analytics tasks such as: preparing , aggregating and summarizing data, finding patterns, and developing ways to automate manual processes, all with Python coding.

 

Planned topics

 

Day 1 - Morning:

 

  1. Review Python common functionalities and data structures used in data science.
  2. Learn the most important Python libraries in data science (Pandas, Numpy, Matplotlib).
  3. Hands on: Python functionalities and dataframes.

 

Day 1 - Afternoon:

 

  1. Read and write data from/to different formats (excel, csv, text, json, etc.).
  2. Cleanse and select important records from dataframes.
  3. Deal with missing data: identify, replace, and eliminate records.
  4. Sort dataframes by multiple columns.
  5. Hands on: Data manipulations with Pandas.

 

Day 2 - Morning:

 

  1. Leverage the functions apply, lambda, filter, and map.
  2. Merge/Join dataframes by foreign keys.
  3. Learn pivot tables in Pandas.
  4. Hands-on: Data aggregation and summarization.

 

Day 2 - Afternoon:

 

  1. Learn data visualizations with the libraries Matplotlib and Seaborn.
  2. Introduction to the Machine Learning library Sklearn.
  3. Apply linear and logistic regression with Sklearn.
  4. Hands on: Data predictions

 

 

 



About the Instructor: Arafat Mokhtar

Arafat Mokhtar is a Business Intel Engineer at Stanford School of Medicine, who supports the Human Resources Group with data collections, validation, cleansing, and analytics to provide actionable data insights used by leadership management to make data-driven decisions on the organization workforce. He develops code to automate data analytics processes, proposes data solutions, and develops measurable business metrics.

 

Arafat holds a Ph.D. in Particle Physics and spent several years as a postdoctoral fellow at SLAC National Accelerator Laboratory. He has 10+ years of teaching experience and conducted a number of Python and R training sessions for Stanford Technology Training Programs.

 

 

Effective immediately in response to COVID-19, all Technology Training classes will be delivered online until further notice.

In advance of each session, Tech Training will provide you with a Zoom link to your class, along with any required class materials.
 



Learn how to code in Python, one of the most popular programming languages today. This class covers the fundamentals of developing scripts to automate routine work and scale large-load work.

By the end of this course, you will have a better understanding of common coding skills in Python, and acquire knowledge of its data structures, modules, functions, input/output, exceptions, and the basics of the object-oriented methodologies. This course covers how to develop, test, debug, and improve your coding skills in Python.

Schedule

Session 1 (3 hours):
1. Variables and strings manipulations
2. Lists, Sets, Dictionaries, and Tuples
3. Sorting functions
4. If statements, for and while loops

Session 2 (3 hours):  
1. Opening, reading, and writing files
2. Functions and modules
3. Functions with variable number of arguments
4. Exception handlings
5. Assertion and corner cases

Session 3 (3 hours):
1. Lambda function and List comprehension
2. The modules math, datetime, os, sys, and urllib
3. The regular expressions module (re)  and use cases

Session 4 (3 hours):
1. Object Oriented Programming in Python
2. Magic methods, object Equality, and properties of an instance of a class
 




University IT Technology Training classes are only available to Stanford University staff, faculty, or students. A valid SUNet ID is needed in order to enroll in a class.