Skip to content Skip to site navigation Skip to service navigation

Big Data on Amazon Web Service (3-Day Class)

Class Sessions

Date Location Cost
  • Tue Dec 10, 9:00 am to 5:00 pm
  • Wed Dec 11, 9:00 am to 5:00 pm
  • Thu Dec 12, 9:00 am to 5:00 pm
Birch Hall 107 (Birch Lab B) $1,150

Class Code

ITS-2685

Class Description

Discover cloud-based big data solutions such as Amazon Elastic MapReduce (EMR), Amazon Redshift, Amazon Kinesis and the rest of the AWS big data platform.

In this course, we show you how to use Amazon EMR to process data using the broad ecosystem of Hadoop tools like Hive and Hue. We also teach you how to create big data environments, work with Amazon DynamoDB, Amazon Redshift, Amazon QuickSight, Amazon Athena and Amazon Kinesis, and leverage best practices to design big data environments for security and cost-effectiveness.

 

This course teaches you how to:

  • Fit AWS solutions inside of a big data ecosystem
  • Leverage Apache Hadoop in the context of Amazon EMR
  • Identify the components of an Amazon EMR cluster
  • Launch and configure an Amazon EMR cluster
  • Leverage common programming frameworks available for Amazon EMR including Hive, Pig, and Streaming
  • Leverage Hue to improve the ease-of-use of Amazon EMR
  • Use in-memory analytics with Spark on Amazon EMR
  • Choose appropriate AWS data storage options
  • Identify the benefits of using Amazon Kinesis for near real-time big data processing
  • Leverage Amazon Redshift to efficiently store and analyze data
  • Comprehend and manage costs and security for a big data solution
  • Identify options for ingesting, transferring, and compressing data
  • Leverage Amazon Athena for ad-hoc query analytics
  • Leverage AWS Glue to automate ETL workloads.
  • Use visualization software to depict data and queries using Amazon QuickSight
  • Orchestrate big data workflows using AWS Data Pipeline

 

This course is intended for:

Individuals who are responsible for designing and implementing big data solutions, namely Solutions Architects and SysOps Administrators.

Data Scientists and Data Analysts interested in learning about big data solutions on AWS.

 

Prerequisites

  • We recommend that attendees of this course have the following prerequisites:
  • Basic familiarity with big data technologies, including Apache Hadoop, HDFS, and SQL/NoSQL querying.
  • Students should complete the Big Data Technology Fundamentals web-based training or have equivalent experience.
  • Working knowledge of core AWS services and public cloud implementation.
  • Students should complete the AWS Essentials course or have equivalent experience.
  • Basic understanding of data warehousing, relational database systems, and database design.

 

Course Outline

This course covers the following concepts on each day:

Day 1

  • Overview of Big Data
  • Ingestion
  • Big Data streaming and Amazon Kinesis
  • Using Kinesis to stream and analyze Apache server logs
  • Storage Solutions
  • Querying Big Data using Amazon Athena
  • Using Amazon Athena to analyze log data
  • Introduction to Apache Hadoop and Amazon EMR

 

Day 2

  • Using Amazon Elastic MapReduce
  • Storing and Querying Data on DynamoDB
  • Hadoop Programming Frameworks
  • Processing Server Logs with Hive on Amazon EMR
  • Streamlining Your Amazon EMR Experience with Hue
  • Running Pig Scripts in Hue on Amazon EMR
  • Spark on Amazon EMR
  • Processing New York Taxi dataset using Spark on Amazon EMR

 

Day 3

  • Using AWS Glue to automate ETL workloads
  • Amazon Redshift and Big Data
  • Visualizing and Orchestrating Big Data
  • Visualizing
  • Managing Amazon EMR Costs
  • Securing Big Data solutions
  • Big Data Design Patterns

 


 

University IT Technology Training classes are only available to Stanford University staff, faculty, or students. A valid SUNet ID is needed in order to enroll in a class.