Skip to content Skip to site navigation Skip to service navigation

Analyzing Data with Python

Class Sessions

Date Delivery Method Cost
  • Mon Jul 18, 9:00 am to 12:00 pm
  • Tue Jul 19, 9:00 am to 12:00 pm
  • Mon Jul 25, 9:00 am to 12:00 pm
  • Tue Jul 26, 9:00 am to 12:00 pm
Live Online - 4 sessions $800

Class Code


Class Description

Effective immediately in response to COVID-19, most Technology Training classes will be delivered online until further notice.

In advance of each session, Tech Training will provide you with a Zoom link to your class, along with any required class materials.


Already know Python? Now it is time to acquire the knowledge needed to start using Python in data analytics tasks to scale up and automate processes.



  1. Basic knowledge of Python, or other programming languages
  2. Able to write a Python script that gives the character count for the text "Hello world"
  3. Given two lists (e.g. x=['a', 'b', 'c'] and y=['d', 'a', 'e']), being able to find:
    - the common elements in the two lists
    - the elements in x but not in y and vice versa


This class will help you to leverage your Python skill and venture into the field of data-analytics. We will introduce concepts of data manipulation and analysis such as Dataframe and visualization techniques using Python data science libraries such as Pandas/Numpy/Matplotlib. We will also briefly discuss machine learning libraries such as Sklearn.


By the end of this course, you will be able to accomplish common data analytics tasks such as: preparing , aggregating and summarizing data, finding patterns, and developing ways to automate manual processes, all with Python coding.


Planned topics


Day 1 - Morning:


  1. Review Python common functionalities and data structures used in data science.
  2. Learn the most important Python libraries in data science (Pandas, Numpy, Matplotlib).
  3. Hands on: Python functionalities and dataframes.


Day 1 - Afternoon:


  1. Read and write data from/to different formats (excel, csv, text, json, etc.).
  2. Cleanse and select important records from dataframes.
  3. Deal with missing data: identify, replace, and eliminate records.
  4. Sort dataframes by multiple columns.
  5. Hands on: Data manipulations with Pandas.


Day 2 - Morning:


  1. Leverage the functions apply, lambda, filter, and map.
  2. Merge/Join dataframes by foreign keys.
  3. Learn pivot tables in Pandas.
  4. Hands-on: Data aggregation and summarization.


Day 2 - Afternoon:


  1. Learn data visualizations with the libraries Matplotlib and Seaborn.
  2. Introduction to the Machine Learning library Sklearn.
  3. Apply linear and logistic regression with Sklearn.
  4. Hands on: Data predictions


University IT Technology Training classes are only available to Stanford University staff, faculty, students and Stanford Hospitals & Clinics employees. A valid SUNet ID is needed in order to enroll in a class.